68 research outputs found

    Boreal Forest Properties from TanDEM-X Data Using Interferometric Water Cloud Model and Implications for a Bistatic C-Band Mission

    Get PDF
    Data from TanDEM-X in single-pass and bistatic interferometric mode together with the interferometric water cloud model (IWCM) can provide estimates of forest height and stem volume (or the related above-ground biomass) of boreal forests with high accuracy. We summarize results from two boreal test sites using two approaches, i.e., 1) based on model calibration using reference insitu stands, and 2) based on minimization of a cost function. Both approaches are based on inversion of IWCM, which models the complex coherence and backscattering coefficient of a homogeneous forest layer, which includes gaps where free-space wave propagation is assumed. A digital terrain model of the ground is also needed. IWCM is used to estimate forest height or stem volume, since the two variables are assumed to be related through an allometric equation. A relationship between the fractional area of gaps, the area-fill, and stem volume is also required to enable model inversion. The accuracy of the stem volume estimate in the two sites varies between 16% and 21% for height of ambiguity <100 m. The results clearly show the importance of using summer-time acquisitions. Based on the TanDEM-X results at X-band, C-band data from the ERS-1/ERS-2 tandem mission are revisited to investigate the potential of a future bistatic C-band interferometric mission. Out of nine ERS-1/ERS-2 pairs, only one pair was found to be acquired at summer temperatures, without precipitation and with high coherence. A simulated bistatic phase height is shown to give approximately the same sensitivity to stem volume as TanDEM-X

    Measurements of atmospheric water vapor with microwave radiometry

    Get PDF
    A dual-channel, ground-based microwave radiometer, working at the frequencies 21.0 and 31.4 GHz, an infrared spectral hygrometer, and radiosondes have been used for comparative measurements of the integrated amount of precipitable water vapor in the atmosphere over a period with zenith water vapor contents varying between 6 and 26 mm. The microwave radiometer was found to give comparable or better formal accuracy than the radiosondes, the absolute accuracy of which is believed to be about 1 mm. The rms difference of the integrated amount of water vapor in the zenith direction measured with the microwave radiometer and with radiosondes was 1.2 mm for all data, and 0.8 mm for a selected group of good weather data. These are lower formal errors than previously reported. It is shown that the simplified relation between the radiometer antenna termperatures and the integrated amount of water vapor in this case contributes with a formal error of about 0.3 mm. It is suggested that mean ground weather data can be used to adapt this relation to other sites and seasons

    On the Sensitivity of TanDEM-X-Observations to Boreal Forest Structure

    Get PDF
    The structure of forests is important to observe for understanding coupling to global dynamics of ecosystems, biodiversity, and management aspects. In this paper, the sensitivity of X-band to boreal forest stem volume and to vertical and horizontal structure in the form of forest height and horizontal vegetation density is studied using TanDEM-X satellite observations from two study sites in Sweden: Remningstorp and Krycklan. The forest was analyzed with the Interferometric Water Cloud Model (IWCM), without the use of local data for model training, and compared with measurements by Airborne Lidar Scanning (ALS). On one hand, a large number of stands were studied, and in addition, plots with different types of changes between 2010 and 2014 were also studied. It is shown that the TanDEM-X phase height is, under certain conditions, equal to the product of the ALS quantities for height and density. Therefore, the sensitivity of phase height to relative changes in height and density is the same. For stands with a phase height >5 m we obtained an root-mean-square error, RMSE, of 8% and 10% for tree height in Remningstorp and Krycklan, respectively, and for vegetation density an RMSE of 13% for both. Furthermore, we obtained an RMSE of 17% for estimation of above ground biomass at stand level in Remningstorp and in Krycklan. The forest changes estimated with TanDEM-X/IWCM and ALS are small for all plots except clear cuts but show similar trends. Plots without forest management changes show a mean estimated height growth of 2.7% with TanDEM-X/IWCM versus 2.1% with ALS and a biomass growth of 4.3% versus 4.2% per year. The agreement between the estimates from TanDEM-X/IWCM and ALS is in general good, except for stands with low phase height

    Retrieval of forest stem volume using VHF SAR

    Get PDF
    The ability to retrieve forest stem volume using CARABAS (coherent all radio band sensing) SAR images (28–60 MHz) has been investigated. The test site is a deciduous mixed forest on the island of Öland in southern Sweden. The images have been radiometrically calibrated using an array of horizontal dipoles. The images exhibit a clear discrimination between the forest and open fields. The results show that the dynamic range of the backscattering coefficient among the forest stands is higher than what has been found with conventional SAR using microwave frequencies. The backscatter increases with increasing radar frequency. This work shows an advantage compared to higher frequencies for stem volume estimation in dense forests

    Biomass growth from multi-temporal TanDEM-X interferometric synthetic aperture radar observations of a boreal forest site

    Get PDF
    Forest growth estimation is important in forest research and forest management, but complex to analyze in diverse forest stands. Twelve summertime TanDEM-X acquisitions from the boreal test site, Krycklan, in Sweden, with a known digital terrain model, DTM, have been used to study phase height and aboveground biomass change over 3.2 years based on the Interferometric Water Cloud Model, IWCM. The maximum phase height rate was determined to 0.29 m/yr, while the mean phase height rate was 0.16 m/yr. The corresponding maximum growth rate of the aboveground dry biomass, AGB, was 4.0 Mg/ha/yr with a mean rate of 1.9 Mg/ha/yr for 27 stands, varying from 23 to 183 Mg/ha. The highest relative AGB growth was found for young stands and high growth rates up to an age of 150 years. Growth rate differences relative a simplified model assuming AGB to be proportional to the phase height were studied, and the possibility to avoid a DTM was discussed. Effects of tree species, thinning, and clear cutting were evaluated. Verifications using in situ data from 2008 and a different in situ dataset combined with airborne laser scanning data from 2015 have been discussed. It was concluded that the use of multi-temporal TanDEM-X interferometric synthetic aperture radar observations with AGB estimates of each individual observation can be an important method to derive growth rates in boreal forests

    Multitemporal repeat-pass SAR interferometry of boreal forests

    Get PDF
    Multitemporal European Remote Sensing satellites 1 and 2 (ERS-1/2) and the Japanese Earth Resources Satellite 1 (JERS-1) interferometric synthetic aperture radar (InSAR) data from a boreal forest test site in Sweden (stem volumes up to 335 m3/ha, equivalent to above-ground dry biomass of 200 tons/ha) are studied in order to estimate stem volume using coherence and backscatter. The changes of JERS-1 backscatter and ERS-1/2 tandem coherence between images are consistent over the area studied, in contrast to ERS-1/2 backscatter. A model-based regression analysis has been performed, and the use of the model for inversion is discussed and compared with other approaches found in the literature. The model parameters are discussed in terms of their relation to wind speed and temperature. Results from the different acquisitions are combined to improve the stem volume estimation. The accuracy in terms of rms error (RMSE) for standwise estimated stem volume is 10 m3/ha using ERS-1/2 coherence. Using backscatter and coherence from JERS-1 we obtain an RMSE of 30–35 m3/ha. Finally, conditions for accurate retrieval of stem volume using multitemporal InSAR observations are discussed. We conclude that C- and L-band repeat-pass InSAR can provide stem volume estimates in boreal forests with accuracies similar to those of standard in situ measurements
    • …
    corecore